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Abstract: The need to transfer information across a range of space-time scales (i.e., scaling) is coupled with
the need to predict variables and processes of interest across landscapes. Agricultural landscapes offer a
unique set of problems and space-time data availability with the onset of satellite-based positioning and crop
yield monitoring. The present study addresses quantification of the spatial variability of rainfed crop yield
and near-surface soil water over a farm field using three methods: 1) geostatistical and fractal analyses; 2)
multiple linear regression (MLR) using topographic attributes for explanatory variables; and 3}
nonparametric estimation by Spatial Artificial Neural Networks (SANN). Method 1 is useful for scaling the
spatial moments of each variable to determine appropriate scales of measurement and management. Methods
2 and 3 take advantage of empirical and process knowledge of topographic controls on water movement and
microenvironments, where topographic attributes estimated from a digital elevation model at some scale (10
m by 10 m here) help explain the observed spatial variability in crop yield. Soil water (top 30 cm) displays
more random spatial variability, and its dynamic nature makes it difficult to predict in both space and time.
Despite such variability, spatial structure is evident and can be approximated by simple fractals out to lag
distances of about 400 m. The SANN technique is more flexible than point-to-point parametric correlations,
including the use of spatial activation functions for interpolation within a field. Using topographic attributes
as input, SANN provides a minimum prediction error of 0.57 relative root mean squared error (RRMSE) for
CEOP-Y visld in 1907 swhich p-ynimr;s 58%, of the antm] variapce rnmnar?d with 48% for MLR. Within feld

interpolation (addm&, the easting and northing as mputs) reduced the RRMSE t0 0.47 (R’ = 0.78).
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The field used in this study is part of the Lindstrom

}. EN?RODUCTION

Vanabxl;ty in crop yleld stems from nonhnear

spatial interactions between numerous factors,
including topographic relief, precipitation, soil
hydraulic properties, nutrients and organic matter.
Such factors cause variability at nested scales that
may give rise to a selfesimilar pattern of variation
described by fractal geometry [Mandelbrot 1977,
Burrough 1981; Green et al. 1999]. Wood {1995]
and Peters-Liddard et al. [2001] used remotely
sensed data and modeled soll moisture to
demonstrate  (multiMractal  behavior.  Fractal
analyses characterize the different scales of spatial
variability, which may be useful for determining
the optimum sizes of management zones. There is
further need for prediction of spatial patterns of
crop vield based on independent spatial data.
Landscape topography reveals spatial patterns
similar to crop yield; thus computed topographic
attributes may help quantify yield patterns,

farm located in eastern Colorado, USA (40.37N,

“103.13W). We collectsd spatial yield data for

winter wheat in 1997 and Foxtail Millet in 1999,
The average pan evaporation is approximately 1600
mm per growing season, while the average annual
precipitation (1961-90) is only 440 mm [Peterson et
al. 2000]. The terrain in northeastern Colorado is
generally undulating with aeolian deposits of silt-
and sand-sized material mantling sedimentary rock
{primarily sandstone} and fluvial deposits of the
South Platte River Basin. The relief is relatively
pronounced in the study field, where the elevation
ranges from approximately 1365 m to 1386 m, with
siopes exceeding 6%. The unconsolidated sediment
and soils are refatively thick (at least 3 m) with little
or no surface expressions of groundwater or
perched water in the root zone. Thin calcargous
horizons have been sampled at depths of 20-50 cm,
but soil horizons are wnot very pronounced
otherwise.
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2. METHODS

2.1 Measurements

Crop yield monitoring on the Lindstrom Farm
began in 1997, and more concerted efforis to
measure the soils, soil-water content and
topography began in 1999. The present discussion
focuses on spatial measurement of elevation, nzar-
surface water content, and crop yield.

2.1.1 Elevation

Elevation data were collected using dual-
frequency, real-time kinematic GPS mounted to an
all-terrain ~ vehicle. Raw  elevation data
{approximately 5Sm resolution) were interpolated to
a 10m by 10m grid digital elevation model (DEM).
The experimental variogram, out to a separation
distance of 15 meters, was fit to a Gaussian model.
Cross-validation of this interpolation method
resulted in an RMSE of 0.036 m.

2.1.2 Crop yieid

Winter wheat was harvested in July 1997 vsing a
9-m wide combine head and measured with 2 yield
monitor {(MicroTrak Systems Inc.} linked to GPS
with satellite (OmniStar™) differential correction.
Values from irregular yield polygons were
inferpolated using Kriging onto the 10m DEM.

Foxtail Millet (hay) was baled in the field. A
sample of the hay bales were measured for
volume, water content and weight to determine the

e —dryweight per-bale Bale locations—were-located——— _Analyses of experimental vatiograms and model fiis

with a GPS 1o determine the harvest area.
2.1.3 Surface soil moisture

Soil waler contents in the top 30 cm were
measured using time domain reflectometry (TDR)

_in the spatial pattern shown in Figure 1 for each

sampling period (typically two days). The TDR
probes were inserted using a hydraulic coring
device (Giddings Machine Co.) mounted on a 6-
wheel ATV (John Deere Gator™) similar to
Western and  Grayson [1998]. A - satellite
differential GPS (XRS™ by Trimble) was used for
both  navigation to sample points and
comumunication with  the TraseBE™ TDR
instrument (Soil Moisture, Inc.), making rapid
measurements possible.

2.2 Daia Analyses

2.2,1 Computing topographic attributes

Topographic attributes can be computed using a
DEM and GIS software. Estimates of slope and
specific contributing area {SCA), defined as the
upslope contributing area per unit contour upslope
contributing area per unit contour length, were
computed using TARDEM [Tarboton, 2000]

implementing the Di,r method for flow direction
[Tarboten, 1997], with and withouwt sink filling.
The SCA wvalues were log-transformed, as per
Western ez gl [1999], to remove the extreme
skewness in the frequency distribution. The aspect
and plan and profile curvatures were computed
using TAPES-G [Gallant and Wilson 1996]. The
total curvature was computed using a central finite
difference.

- 300 m -

Figure 1. TDR measurement iocatim:s {symbols)
on a map of elevation (darkest = 1365m, lightest =
1386m).

2.2.2 Experimental variograms

were performed using S+ Spatial Analyst™. Power-
law variograms without any nugget were used for
all data types {(elevation, crop yield, and soil water
condent) - to-facilitate -consistent - fractal - analyses
below. In the case of elevation, however, Gaussian
variograms fit the data best. To test for anisotropy,

the  procedure was  Tepeated —with ~directional

variograms for angles of 10, 35, 100 and 145
degrees from North {see patierns in Figure 1).

2,2,3 Fractal analysis

There are numerous methods to test whether spatial
variability follows a fractal behavior [e.g., Barion
and Lapointe 1995]. In this study, we used the
approach of Burrough [1983].  Briefly, the
characteristics of fractional Brownian motion are
that sequentizi increments {¥{x+h)-¥{x}} must have
a Gaussian distribution with zero mean and
variance ¢, and have a variogram that can be
adequately described by:

kY= E[V(x+h) - VoF =227 (1)

where ¥{x+#) and ¥x) are values of yield {or other
variables) at locations x+k and x, £ is the
expectation operator, and F ig a scaling power
parameter known as the Hurst exponent. [t follows
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from Eq. 1 that a good linear fit on log-log plot of
the semivariogram versus lag /1 indicates fractionai
Brownian motion. The fractal dimension D = 2-H,
where /4 is the slope of the fitted straight line
divided by 2. Smaller values of D indicate that the
process is more persistent or smooth.

2.2.4 Maultiple linear regression (MLRE)

Wheat yield for 1997 was regressed on
topographic attributes computed from the DEM.
Univariate correlations were also computed for
soil moisture for 1999-2000 using standard
procedures.

2.2.5 Spatial analysis neural networks (SANM)

The algorithm used herein is 2 simplified version
of the SANN algorithm [Shin and Salas 2000],
implemented by Martinez et al. {2001] for spatial
interpolation. It consists of four layers, namely: an
input layer, Gaussian Kernel Function (GKF)
layer, summation layer, and estimation layer,
where neurons or nodes between layers are
interconnected in the feed-forward direction.

The input layer passes the fnput coordinate vector
to the GKF layer without any weighting. The
GKF layer consists of &/ GKF nodes that represent
the receptive field or influence region of each
observed vector using a QGaussian transfer or
activation function. The response of each GKF
node is a function of the Euclidean distance from
the center to the input vector, reaching its
maximum when the input vector is placed at the

(c). Finally, after harvest and little rain, the soils
were dry, and the distribution skewed to the right.
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Figure 2. Frequency histograms of measured water
content {30 ¢m TDR) for four sampie dates {a-d}.

GKF niode, and decTeasing exponentially outward
from there. The outputs of the GKF nodes are
passed to the summation layer through weighted
connections, and outputs from the summation
nodes are passed to the estimator layer, which
consists of 1 node.

“This “simplified “SANN algorithm has o

operaticnal modes: a fraining mode and an
interpolation mode.  Traimng, as defined here,
consists of model fitting and validation on separate
data sets using multiple realizations of 1600 points
sampled from the spatial crop yield of over 6400
points. We used ten different realizations for each
set of input (explanatory) variables.

3. RESULTS AND DISCUSSION

3.1 Space-Time Data

The soit water data coilected in 1999 s
sumimarized by the histogrars in Figure 2. During
the esarly growth stages in June {2), the crop had
not yet used mwch stored water, and the
distribution was skewed to the left. By mid-Iuly
(b} the distribution was more Gaussian, and late-
July rainfall increased soil water in early August

Figure 3. Winter wheat grain vield overlaid on the
topography of the guarter section {65 ha). Dark
areas are high (up to 7.3 Mg/ha} and light arcas are
low vielding (< 0.9 Mg/ha},

32 Experimental Variograim Analysis

The spatial statistical structures of elevation, crop
yvield and TDR datea are analyzed using
experimental  variograms and  model  fits.
Experimental varioprams include data pairs in a 45
degree view. The Gaussian variogram model fits the
experimental variograms of elevation best over the
full range due to an apparent sill  or periodic
behavior. There is significant anisotropy due to the
prevailing sumumnit and swale directions toward the
SE (Figare 3). Some of this effect could be
removed with Universal Kriging, but not using a
simple linear trend. Furthermere, non-stationary
behavior is expected for this domain size, and
required for the power-law variogram model.

Variograms for winter wheat in 1997 are shown in
Figure 4. The multiplier @ and exponent b of the
power law are shown below cach variograin. The
power-law mode! fits the omni-directional data (a)
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well with iis monotonic structure and small
nugget. Foxtail millet data for 1999 also displays
spatial structure that is fit well by the power-law
model {not shown). The ormmi-directional fit to all
data is very good, and gives parameters that are
very similar to the 100 degree direction. In fact,
the bearing of the baler path was approximaiely

145°, which may be responsible for much of the
observed anisotropy.

TDR wvariograms alse displayed anisctropy, but
Figure 5 shows only the omni-directional
variograms for each sample date in 1999, The
power law fits all but the Jupe 24 sample {(a)
relatively well, with the most structure and best fity
when it was relatively wet (b) and (d).
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Figure 4, Winter Wheat yield data (1997) showing experimental variogram and model fits using
power law {for fractal analysis below) for omni-directional {a) and directional cases (bj-(e). All five model

vartograms are show together on a log-log piot{i}
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Figure 5. Soil water content for five sample dates (a)-(¢), and a compaosite of all five dates on a
log-log plot {f).
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3.3 Scaling with Fractals

The ommi-directional fractal dimensions range
from 1.47 for elevation to 1.98 for soil water in
July 1999. For wheat yield in 1997, D=1.86, and
for millet in 1999, D=1.83. Both display much
less spatial persistence than elevation, but more
than water content. Also, Figure 6 shows the
variability in D and mean water content with time.

Table 2 also shows the benefit of SANN for
interpolation within a field, where the spatial
coordinates (XY} are added as inputs. I is
instructive to compute R* = 1 — RRMSE® where
RRMSE is the relative root mean squared error. For
prediction from topographic afiributes alone using
five inputs, R® = 0.68 for SANN and R® = 0.48 for
MLR.
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Figure 6. Time series of the fractal dimension and
mean values of spatial TDR water content.

3.4 Predicting Crop Yield and Soil Water
Content from Topographic Attributes

Table 1 gives detailed results from univariate
linear regressions between the TDR data and
topographic attributes for each sample date. The
correlations are generally low in this semi-arid
landscape. The correlation coefficient (r} values
for the strongest explanatory variables are plotted
versus the mean water content for each date in

Mean Water Content (%]

Figure 7. Values of the correlation coefficient {1}
between TDR water content and three primary
topographic attributes versus the spatial mean of
water content for each sampling date (see Tablel}.

4, COMCLUSIONS

Measurement of spatial crop yield and soil water
content described here provides data needed for
scaling analyses and testing of spatial regression
methods. Although water content data is “noisy”
and_results in dow _r values from  umivariat

Figulc 7~ Spaﬁai water—comtent—is—most w}.Ua\.}}r
related to these topographic attributes during the
wettest condition.

MELR and SANN- methods were used on the 1997
wheat yield data versus topographic atiributes.
The prediction errors are given in Table 2 for the

best cofibinatens of gt (explanatory) variables,

These are mean relative RMSE values of
prediction from ten realizations of 1000 poiats for
training/correlation and 1000 points for validation.
Figure 8 shows that MLR out-performed SANN
for one topographic input only, and SANN kept
improving with more imputs, The fasi row in

regressions with topogrephic atiributes, there is
spatial structure at the field scale, MLR and SANN
methods using topographic attributes proved useful
for predicting ~spatial crop yield; and -3AMN
demonstrated a distinct advantage for multiple input
variables.
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Table 1. Results of univariate regressions of water content on iopographic attributes, where Z is elevation,
S is slope, Pro C and Plan C are profile and plan curvatures, In{a) is specific contributing area, and W.E is

the wetness index defined as In{a/S).

Sample aierContent (%) Correlation Coefficient (1)

Date # mean St.Dev, 8 FroC Plan T Imia) @ WL
3A0-Jun-1999 5G4 231 2.6 -0.26) 0144 0.9 0,08 043  0.01

15-Jul-1999 526 | 199 3.1 -0.15] -0.08 0.001 .54 0.0 .13

4-Aug-1999 338 23.2 2.5 -0.08 -0.04 0.08 0.80 0402 007
24-Sep-1999 589 133 2.1 -0.22) -0,17 .14 .08 008 0.22
2T-Apr-2000 338 253 1.8 -0.32 045 028 3,17 033 024
23-May-2000 578 20.9 2.9 -0.11 0.03 0.03 0.0 0000 0.02
20-Jun-2000 591 13.1 2.3 0.01 0.13 .13 005! o071 0.03

25-Jul-2000 598 14.3 2.3 -0.03) 0.04 £.04 005 -0.08  0.04
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Figure 8. Comparison of the prediction errors of
neural networks (SANN) and regression {MLR)
versus the number of input (explanatory)
variables.

Table 2. Relative RMSE (RRMSE) of prediction
values using Multiple Linear Regression (MLR)
and Spatial Analysis Neural Networks {SANN). Z
is elevation (relief), $ is Slope, © is total
Curvature, A& is cosine(Aspect), and SCA is
In(Specific Contributing Area), where the
subscript denotes local Sinks (S) or Filled (F),
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